Format

Send to

Choose Destination
See comment in PubMed Commons below
IEEE Trans Biomed Eng. 2013 Feb;60(2):437-45. doi: 10.1109/TBME.2012.2228482. Epub 2012 Nov 20.

Adaptive wavelet Wiener filtering of ECG signals.

Author information

1
Department of Biomedical Engineering, Brno University of Technology, Brno 61200, Czech Republic. smital@phd.feec.vutbr.cz

Abstract

In this study, we focused on the reduction of broadband myopotentials (EMG) in ECG signals using the wavelet Wiener filtering with noise-free signal estimation. We used the dyadic stationary wavelet transform (SWT) in the Wiener filter as well as in estimating the noise-free signal. Our goal was to find a suitable filter bank and to choose other parameters of the Wiener filter with respect to the signal-to-noise ratio (SNR) obtained. Testing was performed on artificially noised signals from the standard CSE database sampled at 500 Hz. When creating an artificial interference, we started from the generated white Gaussian noise, whose power spectrum was modified according to a model of the power spectrum of an EMG signal. To improve the filtering performance, we used adaptive setting parameters of filtering according to the level of interference in the input signal. We were able to increase the average SNR of the whole test database by about 10.6 dB. The proposed algorithm provides better results than the classic wavelet Wiener filter.

PMID:
23192472
DOI:
10.1109/TBME.2012.2228482
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Support Center