Format

Send to

Choose Destination
See comment in PubMed Commons below
Stat Appl Genet Mol Biol. 2012 Nov 26;11(6). pii: /j/sagmb.2012.11.issue-6/1544-6115.1803/1544-6115.1803.xml. doi: 10.1515/1544-6115.1803.

Hierarchical shrinkage priors and model fitting for high-dimensional generalized linear models.

Author information

1
University of Alabama, Birmingham, AL, USA.

Abstract

Abstract Genetic and other scientific studies routinely generate very many predictor variables, which can be naturally grouped, with predictors in the same groups being highly correlated. It is desirable to incorporate the hierarchical structure of the predictor variables into generalized linear models for simultaneous variable selection and coefficient estimation. We propose two prior distributions: hierarchical Cauchy and double-exponential distributions, on coefficients in generalized linear models. The hierarchical priors include both variable-specific and group-specific tuning parameters, thereby not only adopting different shrinkage for different coefficients and different groups but also providing a way to pool the information within groups. We fit generalized linear models with the proposed hierarchical priors by incorporating flexible expectation-maximization (EM) algorithms into the standard iteratively weighted least squares as implemented in the general statistical package R. The methods are illustrated with data from an experiment to identify genetic polymorphisms for survival of mice following infection with Listeria monocytogenes. The performance of the proposed procedures is further assessed via simulation studies. The methods are implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/).

PMID:
23192052
PMCID:
PMC3658361
DOI:
10.1515/1544-6115.1803
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for iFactory Icon for PubMed Central
    Loading ...
    Support Center