Format

Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 2013 Feb 15;591(4):787-97. doi: 10.1113/jphysiol.2012.239590. Epub 2012 Nov 26.

Synchronization and desynchronization in epilepsy: controversies and hypotheses.

Author information

1
Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of Czech Republic, Prague 4-Krc, Czech Republic. jiruskapremysl@gmail.com

Abstract

Epilepsy has been historically seen as a functional brain disorder associated with excessive synchronization of large neuronal populations leading to a hypersynchronous state. Recent evidence showed that epileptiform phenomena, particularly seizures, result from complex interactions between neuronal networks characterized by heterogeneity of neuronal firing and dynamical evolution of synchronization. Desynchronization is often observed preceding seizures or during their early stages; in contrast, high levels of synchronization observed towards the end of seizures may facilitate termination. In this review we discuss cellular and network mechanisms responsible for such complex changes in synchronization. Recent work has identified cell-type-specific inhibitory and excitatory interactions, the dichotomy between neuronal firing and the non-local measurement of local field potentials distant to that firing, and the reflection of the neuronal dark matter problem in non-firing neurons active in seizures. These recent advances have challenged long-established views and are leading to a more rigorous and realistic understanding of the pathophysiology of epilepsy.

PMID:
23184516
PMCID:
PMC3591697
DOI:
10.1113/jphysiol.2012.239590
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center