Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2012 Dec 18;51(50):10087-98. doi: 10.1021/bi301305k. Epub 2012 Dec 10.

Mapping inhibitor binding modes on an active cysteine protease via nuclear magnetic resonance spectroscopy.

Author information

1
Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280, USA.

Abstract

Cruzain is a member of the papain/cathepsin L family of cysteine proteases, and the major cysteine protease of the protozoan Trypanosoma cruzi, the causative agent of Chagas disease. We report an autoinduction methodology that provides soluble cruzain in high yields (>30 mg/L in minimal medium). These increased yields provide sufficient quantities of active enzyme for use in nuclear magnetic resonance (NMR)-based ligand mapping. Using circular dichroism and NMR spectroscopy, we also examined the solution-state structural dynamics of the enzyme in complex with a covalently bound vinyl sulfone inhibitor (K777). We report the backbone amide and side chain carbon chemical shift assignments of cruzain in complex with K777. These resonance assignments were used to identify and map residues located in the substrate binding pocket, including the catalytic Cys25 and His162. Selective [(15)N]Cys, [(15)N]His, and [(13)C]Met labeling was performed to quickly assess cruzain-ligand interactions for a set of eight low-molecular weight compounds exhibiting micromolar binding or inhibition. Chemical shift perturbation mapping verified that six of the eight compounds bind to cruzain at the active site. Three different binding modes were delineated for the compounds, namely, covalent, noncovalent, and noninteracting. These results provide examples of how NMR spectroscopy can be used to screen compounds for fast evaluation of enzyme-inhibitor interactions to facilitate lead compound identification and subsequent structural studies.

PMID:
23181936
PMCID:
PMC3566641
DOI:
10.1021/bi301305k
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center