Format

Send to

Choose Destination
Plant J. 2013 Mar;73(5):836-49. doi: 10.1111/tpj.12082. Epub 2013 Feb 12.

Arabidopsis A BOUT DE SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO₂ levels.

Author information

1
Institut für Biochemie der Pflanzen, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany.

Abstract

Photorespiratory metabolism is essential in all oxygenic photosynthetic organisms. In plants, it is a highly compartmentalized pathway that involves chloroplasts, peroxisomes, mitochondria and the cytoplasm. The metabolic pathway itself is well characterized, and the enzymes required for its function have been identified. However, very little information is available on the transport proteins that catalyze the high metabolic flux between the involved compartments. Here we show that the A BOUT DE SOUFFLE (BOU) gene, which encodes a mitochondrial carrier, is involved in photorespiration in Arabidopsis. BOU was found to be co-expressed with photorespiratory genes in leaf tissues. The knockout mutant bou-2 showed the hallmarks of a photorespiratory growth phenotype, an elevated CO(2) compensation point, and excessive accumulation of glycine. Furthermore, degradation of the P-protein, a subunit of glycine decarboxylase, was demonstrated for bou-2, and is reflected in strongly reduced glycine decarboxylase activity. The photorespiration defect in bou-2 has dramatic consequences early in the seedling stage, which are highlighted by transcriptome studies. In bou-2 seedlings, as in shm1, another photorespiratory mutant, the shoot apical meristem organization is severely compromised. Cell divisions are arrested, leading to growth arrest at ambient CO(2) . Although the specific substrate for the BOU transporter protein remains elusive, we show that it is essential for the function of the photorespiratory metabolism. We hypothesize that BOU function is linked with glycine decarboxylase activity, and is required for normal apical meristems functioning in seedlings.

PMID:
23181524
DOI:
10.1111/tpj.12082
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center