Format

Send to

Choose Destination
Can J Physiol Pharmacol. 2012 Nov;90(11):1446-55. doi: 10.1139/y2012-121. Epub 2012 Nov 8.

Tetrahydroxystilbene glucoside improves the learning and memory of amyloid-β(₁₋₄₂)-injected rats and may be connected to synaptic changes in the hippocampus.

Author information

1
Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.

Abstract

The aim of this study was to evaluate the protective effects of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from Polygonum multiflorum, on learning/memory deficits in Alzheimer's disease (AD). We randomly divided 24 male Sprague-Dawley rats among 4 groups: (i) the sham-operated group (control); (ii) sham-operated group also treated with TSG (sham+TSG); (iii) beta amyloid treated group (Aβ); and (iv) Aβ treatment group also treated with TSG (Aβ+TSG). Rats in the Aβ and Aβ+TSG groups were treated with Aβ₁₋₄₂ intracerebroventricularly, whereas the control and sham+TSG groups were given phosphate-buffered saline. Rats in the sham+TSG and Aβ+TSG groups were then treated intragastrically with TSG (50 mg·(kg body mass)⁻¹·day⁻¹) for 4 weeks, and rats in the Aβ and control groups were treated with saline. The results from Morris water maze tests, electron microscopy, real-time polymerase chain reaction, and Western blotting demonstrated that Aβ₁₋₄₂ induced impairment in learning and memory, degeneration in synaptic structures, and downregulation of Src and NR2B at the gene and protein level, respectively. These alterations were reversed by the administration of TSG, suggesting that TSG exerts anti-AD properties by protecting synaptic structure and function. TSG-induced upregulation of Src and NR2B may be responsible for this process.

PMID:
23181273
DOI:
10.1139/y2012-121
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center