Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Cell. 2012 Dec 11;23(6):1176-88. doi: 10.1016/j.devcel.2012.10.019. Epub 2012 Nov 21.

An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis.

Author information

1
Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.

Erratum in

  • Dev Cell. 2013 Jan 14;24(1):112.

Abstract

A group of genes that are highly and specifically expressed in proliferating skeletal myoblasts during myogenesis was identified. Expression of one of these genes, Hmga2, increases coincident with satellite cell activation, and later its expression significantly declines correlating with fusion of myoblasts into myotubes. Hmga2 knockout mice exhibit impaired muscle development and reduced myoblast proliferation, while overexpression of HMGA2 promotes myoblast growth. This perturbation in proliferation can be explained by the finding that HMGA2 directly regulates the RNA-binding protein IGF2BP2. Add-back of IGF2BP2 rescues the phenotype. IGF2BP2 in turn binds to and controls the translation of a set of mRNAs, including c-myc, Sp1, and Igf1r. These data demonstrate that the HMGA2-IGF2BP2 axis functions as a key regulator of satellite cell activation and therefore skeletal muscle development.

PMID:
23177649
PMCID:
PMC3645921
DOI:
10.1016/j.devcel.2012.10.019
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center