Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(11):e48579. doi: 10.1371/journal.pone.0048579. Epub 2012 Nov 16.

Expression of small RNA in Aphis gossypii and its potential role in the resistance interaction with melon.

Author information

1
College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America. sus56@psu.edu

Abstract

BACKGROUND:

The regulatory role of small RNAs (sRNAs) in various biological processes is an active area of investigation; however, there has been limited information available on the role of sRNAs in plant-insect interactions. This study was designed to identify sRNAs in cotton-melon aphid (Aphis gossypii) during the Vat-mediated resistance interaction with melon (Cucumis melo).

METHODOLOGY/PRINCIPAL FINDINGS:

The role of miRNAs was investigated in response to aphid herbivory, during both resistant and susceptible interactions. sRNA libraries made from A. gossypii tissues feeding on Vat⁺ and Vat⁻ plants revealed an unexpected abundance of 27 nt long sRNA sequences in the aphids feeding on Vat⁺ plants. Eighty-one conserved microRNAs (miRNAs), twelve aphid-specific miRNAs, and nine novel candidate miRNAs were also identified. Plant miRNAs found in the aphid libraries were most likely ingested during phloem feeding. The presence of novel miRNAs was verified by qPCR experiments in both resistant Vat⁺ and susceptible Vat⁻ interactions. The comparative analyses revealed that novel miRNAs were differentially regulated during the resistant and susceptible interactions. Gene targets predicted for the miRNAs identified in this study by in silico analyses revealed their involvement in morphogenesis and anatomical structure determination, signal transduction pathways, cell differentiation and catabolic processes.

CONCLUSION/SIGNIFICANCE:

In this study, conserved and novel miRNAs were reported in A. gossypii. Deep sequencing data showed differences in the abundance of miRNAs and piRNA-like sequences in A. gossypii. Quantitative RT-PCR revealed that A. gossypii miRNAs were differentially regulated during resistant and susceptible interactions. Aphids can also ingest plant miRNAs during phloem feeding that are stable in the insect.

PMID:
23173035
PMCID:
PMC3500242
DOI:
10.1371/journal.pone.0048579
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center