Format

Send to

Choose Destination
See comment in PubMed Commons below
Clin Chem. 2013 Jan;59(1):234-44. doi: 10.1373/clinchem.2012.192815. Epub 2012 Nov 20.

Very low PSA concentrations and deletions of the KLK3 gene.

Author information

1
MRC Centre for Causal Analyses in Translational Epidemiology-CAiTE and Bristol Genetic Epidemiology Laboratories-BGEL, University of Bristol, Bristol, UK. santi.rodriguez@bristol.ac.uk

Abstract

BACKGROUND:

Prostate-specific antigen (PSA), a widely used biomarker for prostate cancer (PCa), is encoded by a kallikrein gene (KLK3, kallikrein-related peptidase 3). Serum PSA concentrations vary in the population, with PCa patients generally showing higher PSA concentrations than control individuals, although a small proportion of individuals in the population display very low PSA concentrations. We hypothesized that very low PSA concentrations might reflect gene-inactivating mutations in KLK3 that lead to abnormally reduced gene expression.

METHODS:

We have sequenced all KLK3 exons and the promoter and searched for gross deletions or duplications in KLK3 in the 30 individuals with the lowest observed PSA concentrations in a sample of approximately 85 000 men from the Prostate Testing for Cancer and Treatment (ProtecT) study. The ProtecT study examines a community-based population of men from across the UK with little prior PSA testing.

RESULTS:

We observed no stop codons or frameshift mutations, but we did find 30 single-base genetic variants, including 3 variants not described previously. These variants included missense variants that could be functionally inactivating and splicing variants. At this stage, however, we cannot confidently conclude whether these variants markedly lower PSA concentration or activity. More importantly, we identified 3 individuals with different large heterozygous deletions that encompass all KLK3 exons. The absence of a functional copy of KLK3 in these individuals is consistent with their reduced serum PSA concentrations.

CONCLUSIONS:

The clinical interpretation of the PSA test for individuals with KLK3 gene inactivation could lead to false-negative PSA findings used for screening, diagnosis, or monitoring of PCa.

PMID:
23169475
DOI:
10.1373/clinchem.2012.192815
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center