Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cereb Blood Flow Metab. 2013 Mar;33(3):381-8. doi: 10.1038/jcbfm.2012.174. Epub 2012 Nov 21.

Mrp1 is essential for sphingolipid signaling to p-glycoprotein in mouse blood-brain and blood-spinal cord barriers.

Author information

1
Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.

Abstract

At the blood-brain and blood-spinal cord barriers, P-glycoprotein, an ATP-driven drug efflux pump, is a major obstacle to central nervous system (CNS) pharmacotherapy. Recently, we showed that signaling through tumor necrosis factor-α (TNF-α), sphingolipids, and sphingosine-1-phosphate receptor 1 (S1PR1) rapidly and reversibly reduced basal P-glycoprotein transport activity in the rat blood-brain barrier. The present study extends those findings to the mouse blood-brain and blood-spinal cord barriers and, importantly, identifies multidrug resistance-associated protein 1 (Mrp1, Abcc1) as the transporter that mediates S1P efflux from brain and spinal cord endothelial cells. In brain and spinal cord capillaries isolated from wild-type mice, TNF-α, sphingosine, S1P, the S1PR agonist fingolimod (FTY720), and its active, phosphorylated metabolite, FTY720P, reduced P-glycoprotein transport activity; these effects were abolished by a specific S1PR1 antagonist. In brain and spinal cord capillaries isolated from Mrp1-null mice, neither TNF-α nor sphingosine nor FTY720 reduced P-glycoprotein transport activity. However, S1P and FTY720P had the same S1PR1-dependent effects on transport activity as in capillaries from wild-type mice. Thus, deletion of Mrp1 alone terminated endogenous signaling to S1PR1. These results identify Mrp1 as the transporter essential for S1P efflux from the endothelial cells and thus for inside-out S1P signaling to P-glycoprotein at the blood-brain and blood-spinal cord barriers.

PMID:
23168528
PMCID:
PMC3587808
DOI:
10.1038/jcbfm.2012.174
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon Icon for PubMed Central
    Loading ...
    Support Center