Send to

Choose Destination
J Med Chem. 2013 Jan 10;56(1):46-59. doi: 10.1021/jm300844m. Epub 2012 Dec 18.

Development of second-generation indole-based dynamin GTPase inhibitors.

Author information

Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.


Focused library development of our lead 2-cyano-3-(1-(3-(dimethylamino)propyl)-2-methyl-1H-indol-3-yl)-N-octylacrylamide (2) confirmed the tertiary dimethylamino-propyl moiety as critical for inhibition of dynamin GTPase. The cyanoamide moiety could be replaced with a thiazole-4(5H)-one isostere (19, IC(₅₀(dyn I)) = 7.7 μM), reduced under flow chemistry conditions (20, IC(₅₀(dyn I)) = 5.2 μM) or replaced by a simple amine. The latter provided a basis for a high yield library of compounds via a reductive amination by flow hydrogenation. Two compounds, 24 (IC(₅₀ (dyn I)) = 0.56 μM) and 25 (IC(₅₀(dyn I)) = 0.76 μM), stood out. Indole 24 is nontoxic and showed increased potency against dynamin I and II in vitro and in cells (IC(₅₀(CME)) = 1.9 μM). It also showed 4.4-fold selectivity for dynamin I. The indole 24 compound has improved isoform selectivity and is the most active in-cell inhibitor of clathrin-mediated endocytosis reported to date.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center