Format

Send to

Choose Destination
Microb Biotechnol. 2013 Mar;6(2):131-40. doi: 10.1111/1751-7915.12001. Epub 2012 Nov 20.

Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.

Author information

1
Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.

Abstract

Because of their abundance in hemicellulosic wastes arabinose and xylose are an interesting source of carbon for biotechnological production processes. Previous studies have engineered several Corynebacterium glutamicum strains for the utilization of arabinose and xylose, however, with inefficient xylose utilization capabilities. To improve xylose utilization, different xylose isomerase genes were tested in C. glutamicum. The gene originating from Xanthomonas campestris was shown to have the highest effect, resulting in growth rates of 0.14 h(-1), followed by genes from Bacillus subtilis, Mycobacterium smegmatis and Escherichia coli. To further increase xylose utilization different xylulokinase genes were expressed combined with X. campestris xylose isomerase gene. All combinations further increased growth rates of the recombinant strains up to 0.20 h(-1) and moreover increased biomass yields. The gene combination of X. campestris xylose isomerase and C. glutamicum xylulokinase was the fastest growing on xylose and compared with the previously described strain solely expressing E. coli xylose isomerase gene delivered a doubled growth rate. Productivity of the amino acids glutamate, lysine and ornithine, as well as the diamine putrescine was increased as well as final titres except for lysine where titres remained unchanged. Also productivity in medium containing rice straw hydrolysate as carbon source was increased.

PMID:
23164409
PMCID:
PMC3917455
DOI:
10.1111/1751-7915.12001
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center