Format

Send to

Choose Destination
Zhongguo Zhong Xi Yi Jie He Za Zhi. 2012 Oct;32(10):1390-3.

[Effects of oxymatrine on the expressions of pro-collagen and fibronectin of fibroblasts derived from human hyperplastic scars].

[Article in Chinese]

Author information

1
Department of Plastic Surgery, Peking University Third Hospital, Beijing.

Abstract

OBJECTIVE:

To study the effects of oxymatrine (OM) on the expressions of pro-collagen I (PC I), pro-collagen II (PC III), fibronectin (FN), matrix metalloproteinase-1 (MMP-1) mRNA of fibroblasts from keloid (KFb), hyperplastic scar (HFb), and normal skin (NFb), and to compare with hydrocortisone (HC).

METHODS:

The primary KFb, HFb and NFb were derived from patients and cultured in vitro using tissue block culture method. The fibroblasts were treated with 500 microg/mL OM, 2 microg/mL HC, or without any medicine (as the control). The mRNA expressions of PC I, PC III, FN, MMP-1 of the fibroblasts were detected using RT-PCR.

RESULTS:

Under the normal condition, when compared with NFb, the mRNA expressions of PC I of KFb and HFb increased by 31.7% and 34.2% (both P < 0.05). Besides, the mRNA expression of PC III of KFb increased by 44.9% (P < 0.01). OM down-regulated the mRNA expressions of FN and PC I of HFb by 18.8% and 23.6% respectively (both P < 0.05). HC decreased the mRNA expressions of FN and PC I of HFb by 26.8% and 43.6% respectively (P < 0.05, P < 0.01). Meantime, OM up-regulated the mRNA expression of MMP-1 of KFb by 21.8% (P < 0.05).

CONCLUSIONS:

OM suppressed the synthesis of extracellular matrix (ECM) possibly through down-regulating the mRNA expressions of PC I and FN. Compared with HC, OM could promote the degradation of ECM through inducing the MMP-1 mRNA expressions of KFb. Therefore, OM could be potentially used in treatment of hypertrophic scar and keloid.

PMID:
23163153
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center