Send to

Choose Destination
J Endocrinol. 2013 Jan 18;216(2):245-63. doi: 10.1530/JOE-12-0395. Print 2013 Feb.

In utero and lactational exposure to vinclozolin and genistein induces genomic changes in the rat mammary gland.

Author information

INSERM U965, UFR Médecine, Hôpital Lariboisière; Université Paris 7, 41 Bd de la chapelle, F-75475 Paris Cedex 10, France Laboratoire d'Oncogénétique, Institut Curie Hôpital René Huguenin, St-Cloud F-92210, France.


Exposure to low doses of environmental estrogens such as bisphenol A and genistein (G) alters mammary gland development. The effects of environmental anti-androgens, such as the fungicide vinclozolin (V), on mammary gland morphogenesis are unknown. We previously reported that perinatal exposure to G, V, and the GV combination causes histological changes in the mammary gland during the peripubertal period, suggesting alterations to the peripubertal hormone response. We now investigate whether perinatal exposure to these compounds alters the gene expression profiles of the developing glands to identify the dysregulated signaling pathways and the underlying mechanisms. G, V, or GV (1 mg/kg body weight per day) was added to diet of Wistar rats, from conception to weaning; female offspring mammary glands were collected at postnatal days (PNDs) 35 and 50. Genes displaying differential expression and belonging to different functional categories were validated by quantitative PCR and immunocytochemistry. At PND35, G had little effect; the slight changes noted were in genes related to morphogenesis. The changes following exposure to V concerned the functional categories associated with development (Cldn1, Krt17, and Sprr1a), carbohydrate metabolism, and steroidogenesis. The GV mixture upregulated genes (Krt17, Pvalb, and Tnni2) involved in muscle development, indicating effects on myoepithelial cells during mammary gland morphogenesis. Importantly, at PND50, cycling females exposed to GV showed an increase in the expression of genes (Csn2, Wap, and Elf5) related to differentiation, consistent with the previously reported abnormal lobuloalveolar development previously described. Thus, perinatal exposure to GV alters the mammary gland hormone response differently at PND35 (puberty) and in animals with established cycles.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Sheridan PubFactory
Loading ...
Support Center