Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2012 Nov 14;32(46):16449-57. doi: 10.1523/JNEUROSCI.2008-12.2012.

Anticipatory remapping of attentional priority across the entire visual field.

Author information

Department of Neurobiology, University of California, Los Angeles, Los Angeles, California 90095, USA.


It has been suggested that one way we may create a stable percept of the visual world across multiple eye movements is to pass information from one set of neurons to another around the time of each eye movement. Previous studies have shown that some neurons in the lateral intraparietal area (LIP) exhibit anticipatory remapping: these neurons produce a visual response to a stimulus that will enter their receptive field after a saccade but before it actually does so. LIP responses during fixation are thought to represent attentional priority, behavioral relevance, or value. In this study, we test whether the remapped response represents this attentional priority by examining the activity of LIP neurons while animals perform a visual foraging task. We find that the population responds more to a target than to a distractor before the saccade even begins to bring the stimulus into the receptive field. Within 20 ms of the saccade ending, the responses in almost one-third of LIP neurons closely resemble the responses that will emerge during stable fixation. Finally, we show that, in these neurons and in the population as a whole, this remapping occurs for all stimuli in all locations across the visual field and for both long and short saccades. We conclude that this complete remapping of attentional priority across the visual field could underlie spatial stability across saccades.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center