Send to

Choose Destination
See comment in PubMed Commons below
Cell Death Dis. 2012 Nov 15;3:e417. doi: 10.1038/cddis.2012.157.

Proteasome inhibition upregulates Bim and induces caspase-3-dependent apoptosis in human mast cells expressing the Kit D816V mutation.

Author information

Department of Medicine, Karolinska Institutet, Stockholm, Sweden.


The majority of patients with systemic mastocytosis exhibit a D816V mutation in the activating loop of the Kit receptor expressed on mast cells. The Kit ligand regulates mast cell survival by transcriptional repression of the proapoptotic BH3-only protein Bim and by promoting Bim phosphorylation that makes it vulnerable for proteasomal-dependent degradation. We investigated here whether prevention of Bim degradation by a proteasomal inhibitor, MG132, would induce apoptosis in mast cells with the D816V mutation. Human umbilical cord blood-derived mast cells (CBMCs) with wild-type (wt) Kit and two different subclones of the human mast cell line-1 (HMC-1) were used for the study: HMC-1.1 with the V560G mutation in the juxtamembrane domain and HMC-1.2 carrying the V560G mutation together with the D816V mutation. MG132 at 1 μM induced apoptosis in all cell types, an effect accompanied by increased BH3-only proapoptotic protein Bim. The raise of Bim was accompanied by caspase-3 activation, and a caspase-3 inhibitor reduced MG132-induced apoptosis. Further, MG132 caused a reduction of activated Erk, a negative regulator of Bim expression, and thus Bim upregulation. We conclude that decreased phosphorylation and increased levels of Bim overcome the prosurvival effect of the D816V mutation and that the results warrant further investigations of the clinical effects of proteasomal inhibition in systemic mastocytosis.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center