Send to

Choose Destination
Nat Commun. 2012;3:1196. doi: 10.1038/ncomms2201.

Coherent optical wavelength conversion via cavity optomechanics.

Author information

Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, 1200 E. California Blvd., MS 128-95, Pasadena, California 91125, USA.


Both classical and quantum systems utilize the interaction of light and matter across a wide range of energies. These systems are often not naturally compatible with one another and require a means of converting photons of dissimilar wavelengths to combine and exploit their different strengths. Here we theoretically propose and experimentally demonstrate coherent wavelength conversion of optical photons using photon-phonon translation in a cavity-optomechanical system. For an engineered silicon optomechanical crystal nanocavity supporting a 4-GHz localized phonon mode, optical signals in a 1.5 MHz bandwidth are coherently converted over a 11.2 THz frequency span between one cavity mode at wavelength 1,460 nm and a second cavity mode at 1,545 nm with a 93% internal (2% external) peak efficiency. The thermal- and quantum-limiting noise involved in the conversion process is also analysed, and in terms of an equivalent photon number signal level are found to correspond to an internal noise level of only 6 and 4 × 10(-3) quanta, respectively.


Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center