Send to

Choose Destination
See comment in PubMed Commons below
Smart Mater Struct. 2012 Jun;21(6):64001.

The cochlea as a smart structure.

Author information

Institute of Sound and Vibration Research, University of Southampton, Tizard Building, Southampton SO17 1BJ, UK.


The cochlea is part of the inner ear and its mechanical response provides us with many aspects of our amazingly sensitive and selective hearing. The human cochlea is a coiled tube, with two main fluid chambers running along its length, separated by a 35 mm-long flexible partition that has its own internal dynamics. A dispersive wave can propagate along the cochlea due to the interaction between the inertia of the fluid and the dynamics of the partition. This partition includes about 12 000 outer hair cells, which have different structures, on a micrometre and a nanometre scale, and act both as motional sensors and as motional actuators. The local feedback action of all these cells amplifies the motion inside the inner ear by more than 40 dB at low sound pressure levels. The feedback loops become saturated at higher sound pressure levels, however, so that the feedback gain is reduced, leading to a compression of the dynamic range in the cochlear amplifier. This helps the sensory cells, with a dynamic range of only about 30 dB, to respond to sounds with a dynamic range of more than 120 dB. The active and nonlinear nature of the dynamics within the cochlea give rise to a number of other phenomena, such as otoacoustic emissions, which can be used as a diagnostic test for hearing problems in newborn children, for example. In this paper we view the mechanical action of the cochlea as a smart structure. In particular a simplified wave model of the cochlear dynamics is reviewed that represents its essential features. This can be used to predict the motion along the cochlea when the cochlea is passive, at high levels, and also the effect of the cochlear amplifier, at low levels.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center