Format

Send to

Choose Destination
See comment in PubMed Commons below
Carbohydr Res. 2012 Dec 15;364:28-40. doi: 10.1016/j.carres.2012.09.020. Epub 2012 Oct 5.

Synthesis of 1,2,3-triazoles from xylosyl and 5-thioxylosyl azides: evaluation of the xylose scaffold for the design of potential glycogen phosphorylase inhibitors.

Author information

1
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2, Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France.

Abstract

Various acetylenic derivatives and acetylated β-D-xylopyranosyl azide or the 5-thio-β-d-xylopyranosyl analogue were coupled by Cu(I)-catalyzed azide alkyne 1,3-dipolar cycloaddition (CuAAC) to afford a series of 1-xylosyl-4-substituted 1,2,3-triazoles. Controlled oxidation of the endocyclic sulfur atom of the 5-thioxylose moiety led to the corresponding sulfoxides and sulfones. Deacetylation afforded 19 hydroxylated xylose and 5-thioxylose derivatives, found to be only sparingly water-soluble. Compared to glucose-based analogues, they appeared to be much weaker inhibitors of glycogen phosphorylase, as the absence of a hydroxymethyl group weakens their binding at the enzyme active site. However, such new xylose derivatives might be useful glycomimetics.

PMID:
23147043
DOI:
10.1016/j.carres.2012.09.020
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center