Format

Send to

Choose Destination
See comment in PubMed Commons below
Anal Chim Acta. 2012 Nov 28;755:17-27. doi: 10.1016/j.aca.2012.10.005. Epub 2012 Oct 12.

Photon level chemical classification using digital compressive detection.

Author information

1
Purdue University, Department of Chemistry, West Lafayette, IN, USA. wilcoxds@purdue.edu

Abstract

A key bottleneck to high-speed chemical analysis, including hyperspectral imaging and monitoring of dynamic chemical processes, is the time required to collect and analyze hyperspectral data. Here we describe, both theoretically and experimentally, a means of greatly speeding up the collection of such data using a new digital compressive detection strategy. Our results demonstrate that detecting as few as ~10 Raman scattered photons (in as little time as ~30 μs) can be sufficient to positively distinguish chemical species. This is achieved by measuring the Raman scattered light intensity transmitted through programmable binary optical filters designed to minimize the error in the chemical classification (or concentration) variables of interest. The theoretical results are implemented and validated using a digital compressive detection instrument that incorporates a 785 nm diode excitation laser, digital micromirror spatial light modulator, and photon counting photodiode detector. Samples consisting of pairs of liquids with different degrees of spectral overlap (including benzene/acetone and n-heptane/n-octane) are used to illustrate how the accuracy of the present digital compressive detection method depends on the correlation coefficients of the corresponding spectra. Comparisons of measured and predicted chemical classification score plots, as well as linear and non-linear discriminant analyses, demonstrate that this digital compressive detection strategy is Poisson photon noise limited and outperforms total least squares-based compressive detection with analog filters.

PMID:
23146390
DOI:
10.1016/j.aca.2012.10.005
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center