Format

Send to

Choose Destination
See comment in PubMed Commons below
Ecol Evol. 2012 Oct;2(10):2485-505. doi: 10.1002/ece3.370. Epub 2012 Aug 31.

Gene expression divergence and nucleotide differentiation between males of different color morphs and mating strategies in the ruff.

Author information

  • 1Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University Norbyvägen 18 D, SE-75236, Uppsala, Sweden ; Department of Animal and Plant Sciences, University of Sheffield Sheffield, S10 2TN, UK.

Abstract

By next generation transcriptome sequencing, it is possible to obtain data on both nucleotide sequence variation and gene expression. We have used this approach (RNA-Seq) to investigate the genetic basis for differences in plumage coloration and mating strategies in a non-model bird species, the ruff (Philomachus pugnax). Ruff males show enormous variation in the coloration of ornamental feathers, used for individual recognition. This polymorphism is linked to reproductive strategies, with dark males (Independents) defending territories on leks against other Independents, whereas white morphs (Satellites) co-occupy Independent's courts without agonistic interactions. Previous work found a strong genetic component for mating strategy, but the genes involved were not identified. We present feather transcriptome data of more than 6,000 de-novo sequenced ruff genes (although with limited coverage for many of them). None of the identified genes showed significant expression divergence between males, but many genetic markers showed nucleotide differentiation between different color morphs and mating strategies. These include several feather keratin genes, splicing factors, and the Xg blood-group gene. Many of the genes with significant genetic structure between mating strategies have not yet been annotated and their functions remain to be elucidated. We also conducted in-depth investigations of 28 pre-identified coloration candidate genes. Two of these (EDNRB and TYR) were specifically expressed in black- and rust-colored males, respectively. We have demonstrated the utility of next generation transcriptome sequencing for identifying and genotyping large number of genetic markers in a non-model species without previous genomic resources, and highlight the potential of this approach for addressing the genetic basis of ecologically important variation.

KEYWORDS:

Birds; RNA-seq; genomics; lek; next generation sequencing; ruff

PMID:
23145334
PMCID:
PMC3492775
DOI:
10.1002/ece3.370
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center