Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(11):e48869. doi: 10.1371/journal.pone.0048869. Epub 2012 Nov 7.

Apoptosis-related gene expression profiles of mouse ESCs and maGSCs: role of Fgf4 and Mnda in pluripotent cell responses to genotoxicity.

Author information

  • 1Institute of Human Genetics, University of Goettingen, Goettingen, Germany.


Stem cells in the developing embryo proliferate and differentiate while maintaining genomic integrity, failure of which may lead to accumulation of mutations and subsequent damage to the embryo. Embryonic stem cells (ESCs), the in vitro counterpart of embryo stem cells are highly sensitive to genotoxic stress. Defective ESCs undergo either efficient DNA damage repair or apoptosis, thus maintaining genomic integrity. However, the genotoxicity- and apoptosis-related processes in germ-line derived pluripotent cells, multipotent adult germ-line stem cells (maGSCs), are currently unknown. Here, we analyzed the expression of apoptosis-related genes using OligoGEArray in undifferentiated maGSCs and ESCs and identified a similar set of genes expressed in both cell types. We detected the expression of intrinsic, but not extrinsic, apoptotic pathway genes in both cell types. Further, we found that apoptosis-related gene expression patterns of differentiated ESCs and maGSCs are identical to each other. Comparative analysis revealed that several pro- and anti-apoptotic genes are expressed specifically in pluripotent cells, but markedly downregulated in the differentiated counterparts of these cells. Activation of the intrinsic apoptotic pathway cause approximately ∼35% of both ESCs and maGSCs to adopt an early-apoptotic phenotype. Moreover, we performed transcriptome studies using early-apoptotic cells to identify novel pluripotency- and apoptosis-related genes. From these transcriptome studies, we selected Fgf4 (Fibroblast growth factor 4) and Mnda (Myeloid cell nuclear differentiating antigen), which are highly downregulated in early-apoptotic cells, as novel candidates and analyzed their roles in apoptosis and genotoxicity responses in ESCs. Collectively, our results show the existence of common molecular mechanisms for maintaining the pristine stem cell pool of both ESCs and maGSCs.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center