Format

Send to

Choose Destination
Nat Med. 2012 Dec;18(12):1820-6. doi: 10.1038/nm.2972. Epub 2012 Nov 11.

A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease.

Author information

1
Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Abstract

Live, attenuated RNA virus vaccines are efficacious but subject to reversion to virulence. Among RNA viruses, replication fidelity is recognized as a key determinant of virulence and escape from antiviral therapy; increased fidelity is attenuating for some viruses. Coronavirus (CoV) replication fidelity is approximately 20-fold greater than that of other RNA viruses and is mediated by a 3'→5' exonuclease (ExoN) activity that probably functions in RNA proofreading. In this study we demonstrate that engineered inactivation of severe acute respiratory syndrome (SARS)-CoV ExoN activity results in a stable mutator phenotype with profoundly decreased fidelity in vivo and attenuation of pathogenesis in young, aged and immunocompromised mice. The ExoN inactivation genotype and mutator phenotype are stable and do not revert to virulence, even after serial passage or long-term persistent infection in vivo. ExoN inactivation has potential for broad applications in the stable attenuation of CoVs and, perhaps, other RNA viruses.

PMID:
23142821
PMCID:
PMC3518599
DOI:
10.1038/nm.2972
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Secondary source ID, Grant support

Publication type

MeSH terms

Substances

Secondary source ID

Grant support

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center