Progress in the research of S-adenosyl-L-methionine production

Appl Microbiol Biotechnol. 2013 Jan;97(1):41-9. doi: 10.1007/s00253-012-4536-8. Epub 2012 Nov 8.

Abstract

This minireview mainly aims at the study of S-adenosyl-L-methionine (SAM) production by microbial fermentation. A brief introduction of the biological role and application of SAM was presented. In general, SAM production can be improved by breeding of the producing strain through the conventional mutation or genetic engineering approach in the molecular or cellular scale, by optimization of culture conditions in the cellular scale or bioreactor engineering scale, or by multiscale approach. The productivity of SAM fermentation has been improved greatly through the efforts of many researchers using the methods previously mentioned. The SAM-producing strains used extensively are Pichia pastoris and Saccharomyces cerevisiae. The effect of SAM on antibiotic production was also exemplified. The skill and scheme beneficial to the improvement of SAM production involves the enhancement of SAM synthetase (methionine adenosyltransferase) activity and selection of engineered constitutive promoters with appropriate strength; seeking for and eliminating the rate-limiting factors in SAM synthesis, namely, knocking off the genes that transform SAM and L-methionine (L-Met) to cysteine; release the feedback inhibition of SAM to methylenetetrahydrofolate reductase; blocking the transsulfuration pathway by interfering the responsible enzymes; enhancing ATP level through pulsed feeding of glycerol; and optimizing the L-Met feeding strategy. Precise control of gene expression and quantitative assessment of physiological parameters in engineered P. pastoris were highlighted. Finally, a discussion of the prospect of SAM production was presented.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biotechnology / methods*
  • Culture Media / chemistry
  • Metabolic Engineering / methods*
  • Pichia / genetics*
  • Pichia / growth & development
  • Pichia / metabolism*
  • S-Adenosylmethionine / metabolism*
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / growth & development
  • Saccharomyces cerevisiae / metabolism*

Substances

  • Culture Media
  • S-Adenosylmethionine