Format

Send to

Choose Destination
See comment in PubMed Commons below
Endocr J. 2013;60(3):261-74. Epub 2012 Nov 6.

Analysis of hepatic gene expression profile in a spontaneous mouse model of type 2 diabetes under a high sucrose diet.

Author information

1
Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan. nojima@endo.med.osaka-u.ac.jp

Abstract

Both genetic factors and diabetogenic environmental factors, such as a high-sucrose diet (HSD), are involved in the development of type 2 diabetes. In this study, the Nagoya-Shibata-Yasuda (NSY) mouse, an animal model of type 2 diabetes and C3H mice used as controls, were fed a HSD, a high-fat diet (HFD) or a regular diet (RD) from weaning. In C3H mice, HFD significantly increased body weight gain, but maintained glucose tolerance. In contrast, in NSY mice, HSD resulted in increased body weight gain and liver steatosis and increased glucose intolerance to a greater extent than HFD. Furthermore, we performed DNA microarray analysis to detect differences in hepatic gene expression levels in both strains under HSD. We then performed RT-PCR analysis on selected genes to evaluate basal expression level under RD and changes under HSD conditions. HSD-fed NSY, but not C3H mice, exhibited increased hepatic expression levels of Pparg2, an isoform of Pparg as well as G0s2, a target of Pparg, which are known to be adipocyte-specific genes. Compared to RD-fed C3H mice, hepatic expression levels of Kat2b (transcriptional regulation), Hsd3b5 (steroid hormone metabolism) and Cyp7b1 (bile acid metabolism) were initially lower in RD-fed NSY mice, and were further decreased in HSD-fed NSY mice. Expression of Metallothionein (Mt1) and Metallothionein 2 (Mt2) was significantly lower in NSY mice compared to C3H mice, irrespective of dietary condition. These data suggest that elucidation of this heterogeneity in response to HSD might contribute to further understanding of the gene-environment interactions leading to diabetes in humans.

PMID:
23131898
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center