Send to

Choose Destination
See comment in PubMed Commons below
Oncogene. 2013 Sep 26;32(39):4646-55. doi: 10.1038/onc.2012.490. Epub 2012 Nov 5.

TAF15 is important for cellular proliferation and regulates the expression of a subset of cell cycle genes through miRNAs.

Author information

Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch Cedex, France.


TAF15 (formerly TAFII68) is a member of the FET (FUS, EWS, TAF15) family of RNA- and DNA-binding proteins whose genes are frequently translocated in sarcomas. By performing global gene expression profiling, we found that TAF15 knockdown affects the expression of a large subset of genes, of which a significant percentage is involved in cell cycle and cell death. In agreement, TAF15 depletion had a growth-inhibitory effect and resulted in increased apoptosis. Among the TAF15-regulated genes, targets of microRNAs (miRNAs) generated from the onco-miR-17 locus were overrepresented, with CDKN1A/p21 being the top miRNAs-targeted gene. Interestingly, the levels of onco-miR-17 locus coded miRNAs (miR-17-5p and miR-20a) were decreased upon TAF15 depletion and shown to affect the post-transcriptional regulation of TAF15-dependent genes, such as CDKN1A/p21. Thus, our results demonstrate that TAF15 is required to regulate gene expression of cell cycle regulatory genes post-transcriptionally through a pathway involving miRNAs. The findings that high TAF15 levels are needed for rapid cellular proliferation and that endogenous TAF15 levels decrease during differentiation strongly suggest that TAF15 is a key regulator of maintaining a highly proliferative rate of cellular homeostasis.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center