Send to

Choose Destination
Cell Transplant. 2013;22(4):685-700. doi: 10.3727/096368912X655163. Epub 2012 Nov 1.

Cells and materials for liver tissue engineering.

Author information

Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, ROC.


Liver transplantation is currently the most efficacious treatment for end-stage liver diseases. However, one main problem with liver transplantation is the limited number of donor organs that are available. Therefore, liver tissue engineering based on cell transplantation that combines materials to mimic the liver is under investigation with the goal of restoring normal liver functions. Tissue engineering aims to mimic the interactions among cells with a scaffold. Particular materials or a matrix serve as a scaffold and provide a three-dimensional environment for cell proliferation and interaction. Moreover, the scaffold plays a role in regulating cell maturation and function via these interactions. In cultures of hepatic lineage cells, regulation of cell proliferation and specific function using biocompatible synthetic, biodegradable bioderived matrices, protein-coated materials, surface-modified nanofibers, and decellularized biomatrix has been demonstrated. Furthermore, beneficial effects of addition of growth factor cocktails to a flow bioreactor or coculture system on cell viability and function have been observed. In addition, a system for growing stem cells, liver progenitor cells, and primary hepatocytes for transplantation into animal models was developed, which produces hepatic lineage cells that are functional and that show long-term proliferation following transplantation. The major limitation of cells proliferated with matrix-based transplantation systems is the high initial cell loss and dysfunction, which may be due to the absence of blood flow and the changes in nutrients. Thus, the development of vascular-like scaffold structures, the formation of functional bile ducts, and the maintenance of complex metabolic functions remain as major problems in hepatic tissue engineering and will need to be addressed to enable further advances toward clinical applications.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center