Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(10):e47043. doi: 10.1371/journal.pone.0047043. Epub 2012 Oct 31.

The inheritance pattern of 24 nt siRNA clusters in arabidopsis hybrids is influenced by proximity to transposable elements.

Author information

1
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.

Abstract

Hybrids often display increased size and growth, and thus are widely cultivated in agriculture and horticulture. Recent discoveries demonstrating the important regulatory roles of small RNAs have greatly improved our understanding of many basic biological questions, and could illuminate the molecular basis for the enhanced growth and size of hybrid plants. We profiled small RNAs by deep sequencing to characterize the inheritance patterns of small RNA levels in reciprocal hybrids of two Arabidopsis thaliana accessions, Columbia and Landsberg erecta. We find 24-nt siRNAs predominate among those small RNAs that are differentially expressed between the parents. Following hybridization, the transposable element (TE)-derived siRNAs are often inherited in an additive manner, whereas siRNAs associated with protein-coding genes are often down-regulated in hybrids to the levels observed for the parent with lower relative siRNA levels. Among the protein-coding genes that exhibit this pattern, genes that function in pathogen defense, abiotic stress tolerance, and secondary metabolism are significantly enriched. Small RNA clusters from protein-coding genes where a TE is present within one kilobase show a different predominant inheritance pattern (additive) from those that do not (low-parent dominance). Thus, down-regulation in the form of low-parent dominance is likely the default pattern of inheritance for genic siRNA, and a different inheritance mechanism for TE siRNA is suggested.

PMID:
23118865
PMCID:
PMC3485269
DOI:
10.1371/journal.pone.0047043
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center