Send to

Choose Destination
See comment in PubMed Commons below
Plant Sci. 2012 Dec;197:59-69. doi: 10.1016/j.plantsci.2012.09.002. Epub 2012 Sep 14.

An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice.

Author information

  • 1National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.


Ornithine δ-aminotransferase (δ-OAT) is a pyridoxal-5'-phosphate-dependent enzyme that has been proposed to be involved in proline (Pro) and arginine (Arg) metabolism. However, the actual role of δ-OAT in abiotic responses in plants remains to be clarified. Here we characterized an ornithine δ-aminotransferase gene OsOAT that confers multi-stress tolerance in rice (Oryza sativa). We confirmed that OsOAT is a direct target of the stress-responsive NAC transcription factor SNAC2. OsOAT is responsive to multiple stresses and phytohormone treatments. Both ABA-dependent and ABA-independent pathways contributed to the drought-induced expression of OsOAT. Overexpression of the OsOAT gene in rice resulted in significantly enhanced drought and osmotic stress tolerance. Overexpression of OsOAT caused significantly increased δ-OAT activity and Pro accumulation under normal growth conditions. In addition, OsOAT-overexpressing plants showed significantly increased tolerance to oxidative stress. The glutathione (GSH) content and activity of reactive oxygen species (ROS)-scavenging enzymes, such as glutathione peroxidase, were also increased in OsOAT-overexpressing plants. We conclude that OsOAT is a target gene of SNAC2 and confers stress tolerance mainly through enhancing ROS-scavenging capacity and Pro pre-accumulation.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center