Format

Send to

Choose Destination
J Clin Monit Comput. 2013 Apr;27(2):147-55. doi: 10.1007/s10877-012-9403-8. Epub 2012 Oct 26.

Non-invasive accurate measurement of arterial PCO2 in a pediatric animal model.

Author information

1
Division of Neurosurgery, University Health Network, Toronto, ON, Canada. jornfierstra@gmail.com

Abstract

The PCO2 in arterial blood (PaCO2) is a good parameter for monitoring ventilation and acid-base changes in ventilated patients, but its measurement is invasive and difficult to obtain in small children. Attempts have been made to use the partial pressure of CO2 in end-tidal gas (PETCO2), as a noninvasive surrogate for PaCO2. Studies have revealed that, unfortunately, the differences between PETCO2 and PaCO2 are too variable to be clinically useful. We hypothesized that end-inspiratory rebreathing, previously shown to equalize PETCO2 and PaCO2 in spontaneously breathing humans, would also be effective with positive pressure ventilation. Eight newborn Yorkshire pigs were mechanically ventilated via a partial rebreathing circuit to implement end-inspiratory rebreathing. Arterial blood was sampled and tested for PaCO2. A variety of alveolar ventilations resulting in different combinations of end-tidal PCO2 (30-50 mmHg) and PO2 (35-500 mmHg) were tested for differences between PETCO2 and PaCO2 (PET-aCO2). The PET-aCO2 of all samples was (mean ± 1.96 SD) 0.4 ± 2.7 mmHg. Our study demonstrates that, in ventilated juvenile animals, end-inspiratory rebreathing maintains PET-aCO2 to what would be a clinically useful range. If verified clinically, this approach could open the way for non-invasive monitoring of arterial PCO2 in critically ill patients.

PMID:
23100168
DOI:
10.1007/s10877-012-9403-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center