Format

Send to

Choose Destination
See comment in PubMed Commons below
Yi Chuan. 2012 Oct;34(10):1328-38.

[Animal gene pyramiding in cross populations].

[Article in Chinese]

Author information

1
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. xulingyang@163.com

Abstract

Gene pyramiding aims at producing individuals with one superior economic trait according to the optimal breeding scheme involving selection of favorable target alleles or linked markers after crossing basal populations and pyramiding them into a single individual. In consideration of animal traditional cross program along with the features of animal segregating population, four types of cross programs and two types of selection strategies for gene pyramiding are performed from practice perspective of view, two population cross for pyramiding two genes (denoted II), three populations cascading cross for pyramiding three genes (denoted III), four population symmetrical (denoted IV-S) and cascading cross for pyramiding four genes (denoted IV-C), and various schemes (denoted cross program-A-E) were designed for each cross program with different levels of initial favorable allele frequencies, basal population sizes, and trait heritabilities. The process of gene pyramiding for various schemes were simulated and compared based on the population hamming distance, average superior genotype frequencies, and average phenotypic values. By simulation, the results showed that larger base population size and higher initial favorite allele frequency resulted in higher efficiency of gene pyramiding. The order of parent crossing was shown to be the most important factor in cascading cross, but had no significant influence on the symmetric cross. The results also showed that genotypic selection strategy was superior to phenotypic selection in accelerating gene pyramiding. The method and corresponding software would be used to compare different cross schemes and selection strategies. Moreover, our study would help to build the optimal gene pyramiding simulation platform.

PMID:
23099790
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center