Format

Send to

Choose Destination
Neurotoxicology. 2012 Dec;33(6):1443-1449. doi: 10.1016/j.neuro.2012.10.009. Epub 2012 Oct 22.

Genetic risk for Parkinson's disease correlates with alterations in neuronal manganese sensitivity between two human subjects.

Author information

1
Vanderbilt University Medical Center, Department of Neurology and Vanderbilt Kennedy Center, Nashville, TN 37232-8552, USA.
2
Vanderbilt University Medical Center, Department of Neurology and Vanderbilt Kennedy Center, Nashville, TN 37232-8552, USA; Vanderbilt Brain Institute, Nashville, TN 37232-8552, USA.
3
Vanderbilt University Medical Center, Department of Neurology and Vanderbilt Kennedy Center, Nashville, TN 37232-8552, USA; Vanderbilt Brain Institute, Nashville, TN 37232-8552, USA; Vanderbilt Medical Scientist Training Program, Nashville, TN 37232-8552, USA.
4
Vanderbilt University Medical Center, Department of Neurology and Vanderbilt Kennedy Center, Nashville, TN 37232-8552, USA; Vanderbilt Brain Institute, Nashville, TN 37232-8552, USA; Vanderbilt Center for Stem Cell Biology and The Department of Pediatrics, Nashville, TN 37232-8552, USA.
5
University of North Carolina-Greensboro, Nutrition Department, Greensboro, NC 27402-6107, USA.
6
Vanderbilt University Medical Center, Department of Neurology and Vanderbilt Kennedy Center, Nashville, TN 37232-8552, USA; Vanderbilt Brain Institute, Nashville, TN 37232-8552, USA; Vanderbilt Center for Stem Cell Biology and The Department of Pediatrics, Nashville, TN 37232-8552, USA; Vanderbilt Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37232-8552, USA. Electronic address: aaron.bowman@vanderbilt.edu.

Abstract

Manganese (Mn) is an environmental risk factor for Parkinson's disease (PD). Recessive inheritance of PARK2 mutations is strongly associated with early onset PD (EOPD). It is widely assumed that the influence of PD environmental risk factors may be enhanced by the presence of PD genetic risk factors in the genetic background of individuals. However, such interactions may be difficult to predict owing to the complexities of genetic and environmental interactions. Here we examine the potential of human induced pluripotent stem (iPS) cell-derived early neural progenitor cells (NPCs) to model differences in Mn neurotoxicity between a control subject (CA) with no known PD genetic risk factors and a subject (SM) with biallelic loss-of-function mutations in PARK2 and family history of PD but no evidence of PD by neurological exam. Human iPS cells were generated from primary dermal fibroblasts of both subjects. We assessed several outcome measures associated with Mn toxicity and PD. No difference in sensitivity to Mn cytotoxicity or mitochondrial fragmentation was observed between SM and CA NPCs. However, we found that Mn exposure was associated with significantly higher reactive oxygen species (ROS) generation in SM compared to CA NPCs despite significantly less intracellular Mn accumulation. Thus, this report offers the first example of human subject-specific differences in PD-relevant environmental health related phenotypes that are consistent with pathogenic interactions between known genetic and environmental risk factors for PD.

PMID:
23099318
PMCID:
PMC3518601
DOI:
10.1016/j.neuro.2012.10.009
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center