Format

Send to

Choose Destination
Biochim Biophys Acta. 2013 Jan;1833(1):90-100. doi: 10.1016/j.bbamcr.2012.10.016. Epub 2012 Oct 23.

Inhibition of ERK activation enhances the repair of double-stranded breaks via non-homologous end joining by increasing DNA-PKcs activation.

Author information

1
The Genetics Laboratory, Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, People's Republic of China. haowei727499@163.com

Abstract

Non-homologous end joining (NHEJ) is one of the major pathways that repairs double-stranded DNA breaks (DSBs). Activation of DNA-PK is required for NHEJ. However, the mechanism leading to DNA-PKcs activation remains incompletely understood. We provide evidence here that the MEK-ERK pathway plays a role in DNA-PKcs-mediated NHEJ. In comparison to the vehicle control (DMSO), etoposide (ETOP)-induced DSBs in MCF7 cells were more rapidly repaired in the presence of U0126, a specific MEK inhibitor, based on the reduction of γH2AX and tail moments. Additionally, U0126 increased reactivation of luciferase activity, which resulted from the repair of restriction enzyme-cleaved DSBs. Furthermore, while inhibition of ERK activation using the dominant-negative MEK1K97M accelerated the repair of DSBs, enforcing ERK activation with the constitutively active MEK1Q56P reduced DSB repair. In line with MEK activating ERK1 and ERK2 kinases, knockdown of either ERK1 or ERK2 increased DSB repair. Consistent with the activation of DNA-PKcs being required for NHEJ, we demonstrated that inhibition of ERK activation using U0126, MEK1K97M, and knockdown of ERK1 or ERK2 enhanced ETOP-induced activation of DNA-PKcs. Conversely, enforcing ERK activation by MEK1Q56P reduced ETOP-initiated DNA-PKcs activation. Taken together, we demonstrate that ERK reduces NHEJ-mediated repair of DSBs via attenuation of DNA-PKcs activation.

PMID:
23098854
DOI:
10.1016/j.bbamcr.2012.10.016
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center