Format

Send to

Choose Destination
J Biol Chem. 2012 Dec 7;287(50):42379-88. doi: 10.1074/jbc.M112.413682. Epub 2012 Oct 24.

Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation.

Author information

1
Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA. wxding@kumc.edu

Abstract

Mitochondrial homeostasis via mitochondrial dynamics and quality control is crucial to normal cellular functions. Mitophagy (mitochondria removed by autophagy) stimulated by a mitochondrial uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP), requires Parkin, but it is not clear why Parkin is crucial to this process. We found that in the absence of Parkin, carbonyl cyanide m-chlorophenylhydrazone induced the formation of mitochondrial spheroids. Mitochondrial spheroid formation is also induced in vivo in the liver by acetaminophen overdose, a condition causing severe oxidative mitochondrial damages and liver injury. Mitochondrial spheroids could undergo a maturation process by interactions with acidic compartments. The formation of this new structure required reactive oxygen species and mitofusins. Parkin suppressed these mitochondrial dynamics by promoting mitofusin degradation. Consistently, genetic deletion of mitofusins without concomitant expression of Parkin was sufficient to prevent mitochondrial spheroid formation and resumed mitophagy. Mitochondrial spheroid formation and mitophagy could represent different strategies of mitochondrial homeostatic response to oxidative stress and are reciprocally regulated by mitofusins and Parkin.

PMID:
23095748
PMCID:
PMC3516781
DOI:
10.1074/jbc.M112.413682
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center