Format

Send to

Choose Destination
Hum Hered. 2012;74(1):27-35. doi: 10.1159/000343050. Epub 2012 Oct 20.

INNULs: A novel design amplification strategy for retrotransposable elements for studying population variation.

Author information

1
Institute of Applied Genetics, Department of Forensic and Investigative Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA. bobby.larue@unthsc.edu

Abstract

OBJECTIVES:

Retrotransposable elements (REs), consisting of long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs), are a group of markers that can be useful for human identity testing. Until now, however, due to the inherent size difference (up to 6 kb in some instances) associated with insertion and null alleles (or INNULs), the use of REs for facilitated population studies has not been sought or practical. The size of the insertion elements (from a few hundred to several thousand bp) has proven to limit their utility as a marker because of the inefficient amplicon yield with PCR. A novel primer design now facilitates INNUL marker testing. A preliminary panel of single-locus markers was developed to evaluate the potential of typing these insertion elements. Nine INNULs (5 Alu and 4 LINEs) were typed in three major North American populations and analyzed for population genetic features. In addition, the variation of each marker among the sample populations provides insight of its potential use as individual identification or ancestral marker.

METHODS:

INNUL markers were developed into fluorescently labeled single-loci PCR. Nine markers were developed with amplicons that were less than 180 bp in length, and, depending on the locus amplicons of the INNULs, alleles varied in size from 50 to 1 bp. This allele size is noteworthy because the insertion alleles of the 9 loci range in size from 297 to 6,195 bp. The allele distribution of the INNULs was assessed and analyzed in three major North American populations.

RESULTS:

Upon observation of the distribution of the alleles in three major North American populations, the markers generally met Hardy-Weinberg expectations, and there was little evidence of detectable levels of linkage disequilibrium. Due to varying distributions of the alleles in the major population groups tested, some of the markers might be better suited for use as an individual identification marker, while others are better suited for bio-ancestral studies.

CONCLUSIONS:

Using the primer design strategy described in our work, SINEs and (for the first time, to our knowledge) LINEs can be utilized as markers for studying population genetic variation that is more amenable to the limitations of the PCR technique. This study lays the foundation for future work of developing a multiplex panel of INNUL markers that can be used as a single-tube assay for human identity testing utilizing small amplicons (<180 bp), which could be useful for ancient or degraded forensic DNA samples.

PMID:
23095285
DOI:
10.1159/000343050
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for S. Karger AG, Basel, Switzerland
Loading ...
Support Center