Send to

Choose Destination
See comment in PubMed Commons below
Inorg Chem. 2012 Nov 5;51(21):11458-65. doi: 10.1021/ic301183h. Epub 2012 Oct 24.

From 1D chain to 3D framework uranyl diphosphonates: syntheses, crystal structures, and selective ion exchange.

Author information

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.


In this work, we demonstrate a family of new inorganic-organic hybrid uranyl diphosphonates based on 1-hydroxyethylidenediphosphonic acid (H(4)L) linker by using hydrothermal method. These compounds, (Hbpi)[(UO(2))(H(2)O)(HL)]·H(2)O (UP-1), represents 1D structure, (Hbpi)[(UO(2))(H(2)O)(HL)] (UP-2), (H(2)dib)(0.5)[(UO(2))(H(2)O)(HL)] (UP-3), and [(UO(2))(H(2)O)(H(2)L)]·2H(2)O (UP-4) feature 2D architectures, (H(2)bipy){[(UO(2))(H(2)O)](2)[(UO(2))(H(2)O)(2)](L)(2)}·2H(2)O (UP-5), and (H(3)O)(2){[(UO(2))(H(2)O)](3)(L)(2)}·2H(2)O (UP-6) adopt 3D networks (bpi: 1-(biphenyl-4-yl)-1H-imidazole, dib: 1,4-di(1H-imidazol-1-yl)benzene, bipy: 2,2'-bipyridine). Among them, UP-1, UP-2, UP-3, and UP-4 possess the same structural building unit but with different structures. UP-5 and UP-6 feature the same UO(2)/L ratio of 3:2 but a different structural building unit. Photoluminescence studies reveal that UP-5 displays characteristic emissions of uranyl cations. Ion-exchange experiments demonstrate that the H(3)O(+) in UP-6 can be easily and selectively exchanged by monovalent cations including Na(+), K(+), Cs(+), and Ag(+) cations, whereas the framework retains identical as confirmed by single-crystal X-ray diffractions.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center