Format

Send to

Choose Destination
Fitoterapia. 2013 Jan;84:89-98. doi: 10.1016/j.fitote.2012.10.002. Epub 2012 Oct 23.

Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome(®)) of Boswellia extract.

Author information

1
Central Laboratory of German Pharmacists, Carl-Mannich-Str. 20, 65760 Eschborn, Germany.

Abstract

The anti-inflammatory potential of Boswellia serrata gum resin extracts has been demonstrated in vitro and in animal studies as well as in pilot clinical trials. However, pharmacokinetic studies have evidenced low systemic absorption of boswellic acids (BAs), especially of KBA and AKBA, in rodents and humans. This observation has provided a rationale to improve the formulation of Boswellia extract. We present here the results of a murine comparative bioavailability study of Casperome™, a soy lecithin formulation of standardized B. serrata gum resin extract (BE), and its corresponding non-formulated extract. The concentration of the six major BAs [11-keto-β-boswellic acid (KBA), acetyl-11-keto-β-boswellic acid (AKBA), β-boswellic acid (βBA), acetyl-β-boswellic acid (AβBA), α-boswellic acid (αBA), and acetyl-α-boswellic acid (AαBA)] was evaluated in the plasma and in a series of tissues (brain, muscle, eye, liver and kidney), providing the first data on tissue distribution of BAs. Weight equivalent and equimolar oral administration of Casperome™ provided significantly higher plasma levels (up to 7-fold for KBA, and 3-fold for βBA quantified as area under the plasma concentration time curve, AUC(last)) compared to the non-formulated extract. This was accompanied by remarkably higher tissue levels. Of particular relevance was the marked increase in brain concentration of KBA and AKBA (35-fold) as well as βBA (3-fold) following Casperome™ administration. Notably, up to 17 times higher BA levels were observed in poorly vascularized organs such as the eye. The increased systemic availability of BAs and the improved tissue distribution, qualify Casperome™ for further clinical development to fully exploit the clinical potential of BE.

PMID:
23092618
DOI:
10.1016/j.fitote.2012.10.002
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center