Format

Send to

Choose Destination
See comment in PubMed Commons below
Nano Lett. 2012 Nov 14;12(11):5897-902. doi: 10.1021/nl303305c. Epub 2012 Oct 25.

Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction.

Author information

1
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.

Abstract

The microstructural changes and phase transformations of tin nanoparticles during electrochemical sodiation were studied with a nanosized sodium ion battery using in situ transmission electron microscopy. It was found that the first sodiation process occurred in two steps; that is, the crystalline Sn nanoparticles were initially sodiated via a two-phase mechanism with a migrating phase boundary to form a Na-poor, amorphous Na(x)Sn alloy (x ~ 0.5), which was further sodiated to several Na-rich amorphous phases and finally to the crystallized Na(15)Sn(4) (x = 3.75) via a single-phase mechanism. The volumetric expansion was about 60% in the first step and 420% after the second step. However, despite the huge expansion, cracking or fracture was not observed, which is attributed to the second step of the single-phase sodiation that accommodates large portion of the sodiation-induced stress over the entire particle. Excellent cyclability was also observed during the reversible sodiation/desodiation cycles, showing great potential of Sn nanoparticles as a robust electrode material for rechargeable batteries.

PMID:
23092238
DOI:
10.1021/nl303305c
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center