Format

Send to

Choose Destination
See comment in PubMed Commons below
Health Phys. 2012 Oct;103(4):454-62.

Development and dosimetry of a small animal lung irradiation platform.

Author information

1
Medical Physics Graduate Program, Duke University Medical Center, Durham, NC 27710, USA.

Abstract

Advances in large scale screening of medical countermeasures for radiation-induced normal tissue toxicity are currently hampered by animal irradiation paradigms that are both inefficient and highly variable among institutions. Here, a novel high-throughput small animal irradiation platform is introduced for use in orthovoltage small animal irradiators. Radiochromic film and metal oxide semiconductor field effect transistor detectors were used to examine several parameters, including 2D field uniformity, dose rate consistency, and shielding transmission. The authors posit that this setup will improve efficiency of drug screens by allowing for simultaneous targeted irradiation of multiple animals to improve efficiency within a single institution. Additionally, they suggest that measurement of the described parameters in all centers conducting countermeasure studies will improve the translatability of findings among institutions. The use of tissue equivalent phantoms in performing dosimetry measurements for small animal irradiation experiments was also investigated. Though these phantoms are commonly used in dosimetry, the authors recorded a significant difference in both the entrance and target tissue dose rates between euthanized rats and mice with implanted detectors and the corresponding phantom measurement. This suggests that measurements using these phantoms may not provide accurate dosimetry for in vivo experiments. Based on these measurements, the authors propose that this small animal irradiation platform can increase the capacity of animal studies by allowing for more efficient animal irradiation. They also suggest that researchers fully characterize the parameters of whatever radiation setup is in use in order to facilitate better comparison among institutions.

PMID:
23091878
PMCID:
PMC4615601
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wolters Kluwer Icon for PubMed Central
    Loading ...
    Support Center