Send to

Choose Destination
Immunol Cell Biol. 2013 Jan;91(1):105-14. doi: 10.1038/icb.2012.58. Epub 2012 Oct 23.

Transient Foxp3(+) regulatory T-cell depletion enhances therapeutic anticancer vaccination targeting the immune-stimulatory properties of NKT cells.

Author information

Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.


The natural killer T (NKT) cell ligand, alpha-galactosylceramide (α-GalCer), represents a potential adjuvant to boost immunotherapeutic vaccination strategies against poorly immunogenic cancers. The objective of this study was to assess the therapeutic potential of an α-GalCer-loaded tumor-cell vaccine against solid tumors in mice and to enhance the effectiveness of this approach by removing immune suppression associated with the activity of Foxp3(+) regulatory T cells (Tregs). In the B16F10 melanoma model, we show that single vaccination with irradiated, α-GalCer-loaded tumor cells resulted in suppression of established subcutaneous (s.c.) B16F10 tumor growth, which was mediated by NKT cell-dependent IFN-γ production and enhanced in the absence of IL-17 A. Selective depletion of Foxp3(+) Tregs in transgenic DEpletion of REGulatory T cells (DEREG) mice led to significant inhibition of B16F10 tumor growth and enhanced survival of mice receiving vaccination. Short-term elimination of Foxp3(+) Tregs (<7 days) was sufficient to boost vaccine-induced immunity. Enhanced antitumor activity with combination therapy was associated with an increase in systemic NK cell and effector CD8(+) T-cell activation and IFN-γ production, as well as infiltration of effector CD8(+) T cells into the tumor. Overall, these findings demonstrate that transient depletion of Foxp3(+) Tregs constitutes a highly effective strategy to improve the therapeutic efficacy of anticancer vaccination with NKT cell adjuvants.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center