Send to

Choose Destination
See comment in PubMed Commons below
Behav Brain Res. 2013 Feb 1;238:265-72. doi: 10.1016/j.bbr.2012.10.011. Epub 2012 Oct 18.

Early sensory cortex is activated in the absence of explicit input during crossmodal item retrieval: evidence from MEG.

Author information

  • 1Brain Imaging and Modeling Section, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, United States.


Crossmodal associations form a fundamental aspect of our daily lives. In this study we investigated the neural correlates of crossmodal association in early sensory cortices using magnetoencephalography (MEG). We used a paired associate recognition paradigm in which subjects were tested after multiple training sessions over a span of four weeks. Subjects had to learn 12 abstract, nonlinguistic, pairs of auditory and visual objects that consisted of crossmodal (visual-auditory, VA; auditory-visual, AV) and unimodal (visual-visual, VV; auditory-auditory, AA) paired items. Visual objects included abstract, non-nameable, fractal-like images, and auditory objects included abstract tone sequences. During scanning, subjects were shown the first item of a pair (S1), followed by a delay, then the simultaneous presentation of a visual and auditory stimulus (S2). Subjects were instructed to indicate whether either of the S2 stimuli contained the correct paired associate of S1. Synthetic aperture magnetometry (SAMspm), a minimum variance beamformer, was then used to assess source power differences between the crossmodal conditions and their corresponding unimodal conditions (i.e., AV-AA and VA-VV) in the beta (15-30 Hz) and low gamma frequencies (31-54 Hz) during the S1 period. We found greater power during S1 in the corresponding modality-specific association areas for crossmodal compared with unimodal stimuli. Thus, even in the absence of explicit sensory input, the retrieval of well-learned, crossmodal pairs activate sensory areas associated with the corresponding modality. These findings support theories which posit that modality-specific regions of cortex are involved in the storage and retrieval of sensory-specific items from long-term memory.

Copyright © 2012 Elsevier B.V. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk