Format

Send to

Choose Destination
See comment in PubMed Commons below
Hepatology. 2013 Mar;57(3):995-1004. doi: 10.1002/hep.26099. Epub 2013 Feb 12.

Aging promotes the development of diet-induced murine steatohepatitis but not steatosis.

Author information

1
Department of Medicine, Marion Bessin Liver Research Center, Diabetes Research Center and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

Abstract

The prevalence of the metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in humans increases with age. It is unknown whether this association is secondary to the increased incidence of risk factors for NAFLD that occurs with aging, reflects the culmination of years of exposure to lifestyle factors such as a high-fat diet (HFD), or results from physiological changes that characterize aging. To examine this question, the development of NAFLD in response to a fixed period of HFD feeding was examined in mice of different ages. Mice aged 2, 8, and 18 months were fed 16 weeks of a low-fat diet or HFD. Increased body mass and insulin insensitivity occurred in response to HFD feeding irrespective of the age of the mice. The amount of HFD-induced hepatic steatosis as determined biochemically and histologically was also equivalent among the three ages. Liver injury occurred exclusively in the two older ages as reflected by increased serum alanine aminotransferase levels, positive terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling, and caspase activation. Older mice also had an elevated innate immune response with a more pronounced polarization of liver and adipose tissue macrophages into an M1 phenotype. Studies of cultured hepatocytes from young and old mice revealed that aged cells were selectively sensitized to the Fas death pathway.

CONCLUSION:

Aging does not promote the development of hepatic steatosis but leads to increased hepatocellular injury and inflammation that may be due in part to sensitization to the Fas death pathway and increased M1 macrophage polarization.

PMID:
23081825
PMCID:
PMC3566282
DOI:
10.1002/hep.26099
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center