Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Graph Model. 2012 Sep;38:211-9. doi: 10.1016/j.jmgm.2012.05.004. Epub 2012 Jun 9.

Structural analysis of Ca²⁺ dependent and Ca²⁺ independent type II antifreeze proteins: a comparative molecular dynamics simulation study.

Author information

1
Bioinformatics Centre, Bose Institute, Kolkata, India.

Abstract

Comparative molecular dynamics simulations of Ca²⁺ dependent psychrophilic type II antifreeze protein (AFP) from herring (Clupea harengus) (hAFP) and Ca²⁺ dependent type II antifreeze protein from long snout poacher (Brachyopsis rostratus) (lpAFP) have been performed for 10 ns each at five different temperatures. We have tried to investigate whether the Ca²⁺ dependent protein obtains any advantage in nature over the independent one. To this end the dynamic properties of these two proteins have been compared in terms of secondary structure content, molecular flexibility, solvent accessibility, intra molecular hydrogen bonds and protein-solvent interactions. At 298 and 373 K the flexibility of the Ca²⁺ independent molecule is higher which indicates that Ca²⁺ could contribute to stabilize the structure. The thermal unfolding pathways of the two proteins have also been monitored. The rate of unfolding is similar up to 373 K, beyond that hAFP shows faster unfolding than lpAFP. The essential subspaces explored by the simulations of hAFP and lpAFP at different temperatures are significantly different as revealed from principal component analysis. Our results may help in understanding the role of Ca²⁺ for hAFP to express antifreeze activity. Furthermore our study may also help in elucidating the molecular basis of thermostability of two structurally similar proteins, which perform the same function in different manner, one in presence of Ca²⁺, and the other in absence of the same.

PMID:
23079646
DOI:
10.1016/j.jmgm.2012.05.004
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center