Send to

Choose Destination
See comment in PubMed Commons below
Gene Regul Syst Bio. 2012;6:127-37. doi: 10.4137/GRSB.S10224. Epub 2012 Oct 1.

A next-generation sequencing approach to study the transcriptomic changes during the differentiation of physarum at the single-cell level.

Author information

Molecular Network Analysis Group, Magdeburg Centre for Systems Biology, and Lehrstuhl für Regulationsbiologie, Otto von Guericke University, Magdeburg, Germany.


Physarum polycephalum is a unicellular eukaryote belonging to the amoebozoa group of organisms. The complex life cycle involves various cell types that differ in morphology, function, and biochemical composition. Sporulation, one step in the life cycle, is a stimulus-controlled differentiation response of macroscopic plasmodial cells that develop into fruiting bodies. Well-established Mendelian genetics and the occurrence of macroscopic cells with a naturally synchronous population of nuclei as source of homogeneous cell material for biochemical analyses make Physarum an attractive model organism for studying the regulatory control of cell differentiation. Here, we develop an approach using RNA-sequencing (RNA-seq), without needing to rely on a genome sequence as a reference, for studying the transcriptomic changes during stimulus-triggered commitment to sporulation in individual plasmodial cells. The approach is validated through the obtained expression patterns and annotations, and particularly the results from up- and downregulated genes, which correlate well with previous studies.


Physarum polycephalum; RNA-seq; cell differentiation; single-cell methods

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Libertas Academica Icon for PubMed Central
    Loading ...
    Support Center