Send to

Choose Destination
Eur J Neurosci. 2013 Jan;37(1):10-22. doi: 10.1111/ejn.12016. Epub 2012 Oct 16.

Cells expressing markers of immature neurons in the amygdala of adult humans.

Author information

Neurobiology Unit and Program in Basic and Applied Neurosciences. Cell Biology Department, Universitat de València, Burjassot, Valencia, Spain.


The polysialylated form of the neuronal cell adhesion molecule (PSA-NCAM) is expressed by immature neurons in the amygdala of adult mammals, including non-human primates. In a recent report we have also described the presence of PSA-NCAM-expressing cells in the amygdala of adult humans. Although many of these cells have been classified as mature interneurons, some of them lacked mature neuronal markers, suggesting the presence of immature neurons. We have studied, using immunohistochemistry, the existence and distribution of these immature neurons using post mortem material. We have also analysed the presence of proliferating cells and the association between immature neurons and specialised astrocytes. These parameters have also been studied for comparative purposes in the amygdalae of cats and squirrel monkeys. Our results demonstrate that cells coexpressing doublecortin and PSA-NCAM, but lacking neuronal nuclear antigen expression, were present in the amygdala of adult humans. These cells were organised in elongated clusters, which were located between the white matter of the dorsal hippocampus and the basolateral amygdaloid nucleus. These clusters were not associated with astroglial specialised structures. No cells expressing the proliferative marker Ki67 were observed in the amygdaloid parenchyma, although some of them were found in the vicinity of the lateral ventricle. Immature neurons were also present in the amygdala of squirrel monkeys and cats. These cells also appeared clustered in monkeys, although not as organised as in humans. In cats these cells are scarce, appear isolated and most of the PSA-NCAM-expressing structures corresponded to processes apparently originating from the paleocortical layer II.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center