Format

Send to

Choose Destination
Cell Rep. 2012 Oct 25;2(4):824-39. doi: 10.1016/j.celrep.2012.08.042. Epub 2012 Oct 11.

The transcriptional specificity of NF-κB dimers is coded within the κB DNA response elements.

Author information

1
Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

Abstract

Nuclear factor κB (NF-κB) regulates gene expression by binding to specific DNA elements, known collectively as κB sites, that are contained within the promoters/enhancers of target genes. We found that the identity of the central base pair (bp) of κB sites profoundly affects the transcriptional activity of NF-κB dimers. RelA dimers prefer an A/T bp at this position for optimal transcriptional activation (A/T-centric) and discriminate against G/C-centric κB sites. The p52 homodimer, in contrast, activates transcription from G/C-centric κB sites in complex with Bcl3 but represses transcription from the A/T-centric sites. The p52:Bcl3 complex binds to these two classes of κB sites in distinct modes, permitting the recruitment of coactivator, corepressor, or both coactivator and corepressor complexes in promoters that contain G/C-, A/T-, or both G/C- and A/T-centric sites. Therefore, through sensing of bp differences within κB sites, NF-κB dimers modulate biological programs by activating, repressing, and altering the expression of effector genes.

PMID:
23063365
PMCID:
PMC4167904
DOI:
10.1016/j.celrep.2012.08.042
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center