Format

Send to

Choose Destination
ACS Appl Mater Interfaces. 2012 Nov;4(11):5749-60. doi: 10.1021/am301053m. Epub 2012 Oct 24.

Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes.

Author information

1
State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.

Abstract

An alkali-acitvated method was explored to synthesize activated carbon nanotubes (CNTs-A) with a high specific surface area (SSA), and a large number of mesopores. The resulting CNTs-A were used as an adsorbent material for removal of anionic and cationic dyes in aqueous solutions. Experimental results indicated that CNTs-A have excellent adsorption capacity for methyl orange (149 mg/g) and methylene blue (399 mg/g). Alkali-activation treatment of CNTs increased the SSA and pore volume (PV), and introduced oxygen-containing functional groups on the surface of CNTs-A, which would be beneficial to improving the adsorption affinity of CNTs-A for removal of dyes. Kinetic regression results shown that the adsorption kinetic was more accurately represented by a pseudo second-order model. The overall adsorption process was jointly controlled by external mass transfer and intra-particle diffusion, and intra-particle diffusion played a dominant role. Freundlich isotherm model showed a better fit with adsorption data than Langmuir isotherm model. Adsorption interactions of dyes onto CNTs-A from aqueous solutions were investigated using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) method. The remarkable adsorption capacity of dye onto CNTs-A can be attributed to the multiple adsorption interaction mechanisms (hydrogen bonding, π-π electron-donor-acceptor interactions, electrostatic interactions, mesopore filling) on the CNTs-A. Results of this work are of great significance for environmental applications of activated CNTs as a promising adsorbent nanomaterial for organic pollutants from aqueous solutions.

PMID:
23062571
DOI:
10.1021/am301053m
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center