Format

Send to

Choose Destination
PLoS One. 2012;7(10):e46768. doi: 10.1371/journal.pone.0046768. Epub 2012 Oct 9.

The infectious bursal disease virus RNA-binding VP3 polypeptide inhibits PKR-mediated apoptosis.

Author information

1
Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Cantoblanco, Madrid, Spain.

Abstract

Infectious bursal disease virus (IBDV) is an avian pathogen responsible for an acute immunosuppressive disease that causes major losses to the poultry industry. Despite having a bipartite dsRNA genome, IBDV, as well as other members of the Birnaviridae family, possesses a single capsid layer formed by trimers of the VP2 capsid protein. The capsid encloses a ribonucleoprotein complex formed by the genome associated to the RNA-dependent RNA polymerase and the RNA-binding polypeptide VP3. A previous report evidenced that expression of the mature VP2 IBDV capsid polypeptide triggers a swift programmed cell death response in a wide variety of cell lines. The mechanism(s) underlying this effect remained unknown. Here, we show that VP2 expression in HeLa cells activates the double-stranded RNA (dsRNA)-dependent protein kinase (PKR), which in turn triggers the phosphorylation of the eukaryotic initiation factor 2α (eIF2α). This results in a strong blockade of protein synthesis and the activation of an apoptotic response which is efficiently blocked by coexpression of a dominant negative PKR polypeptide. Our results demonstrate that coexpression of the VP3 polypeptide precludes phosphorylation of both PKR and eIF2α and the onset of programmed cell death induced by VP2 expression. A mutation blocking the capacity of VP3 to bind dsRNA also abolishes its capacity to prevent PKR activation and apoptosis. Further experiments showed that VP3 functionally replaces the host-range vaccinia virus (VACV) E3 protein, thus allowing the E3 deficient VACV deletion mutant WRΔE3L to grow in non-permissive cell lines. According to results presented here, VP3 can be categorized along with other well characterized proteins such us VACV E3, avian reovirus sigmaA, and influenza virus NS1 as a virus-encoded dsRNA-binding polypeptide with antiapoptotic properties. Our results suggest that VP3 plays a central role in ensuring the viability of the IBDV replication cycle by preventing programmed cell death.

PMID:
23056444
PMCID:
PMC3467284
DOI:
10.1371/journal.pone.0046768
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center