Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Microbiol Biotechnol. 2012 Nov;96(4):1079-91. doi: 10.1007/s00253-012-4418-0. Epub 2012 Oct 3.

An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile.

Author information

1
The State Key Laboratory of Microbial Technology, Shandong University, Shan Da Nan Road 27#, Jinan 250100, China.

Abstract

Factors related to ethanol production from xylose in engineered Saccharomyces cerevisiae that contain an exogenous initial metabolic pathway are still to be elucidated. In the present study, a strain that expresses the xylose isomerase gene of Piromyces sp. Pi-xylA and overexpresses XKS1, RPE1, RKI1, TAL1, and TKL1, with deleted GRE3 and COX4 genes was constructed. The xylose utilization capacity of the respiratory deficiency strain was poor but improved via adaptive evolution in xylose. The μ (max) of the evolved strain in 20 g l(-1) xylose is 0.11 ± 0.00 h(-1), and the evolved strain consumed 17.83 g l(-1) xylose within 72 h, with an ethanol yield of 0.43 g g(-1) total consumed sugars during glucose-xylose cofermentation. Global transcriptional changes and effect of several specific genes were studied. The result revealed that the increased xylose isomerase acivity, the upregulation of enzymes involved in glycolysis and glutamate synthesis, and the downregulation of trehalose and glycogen synthesis, may have contributed to the improved xylose utilization of the strain. Furthermore, the deletion of PHO13 decreased the xylose growth in the respiration deficiency strain although deleting PHO13 can improve the xylose metabolism in other strains.

PMID:
23053078
DOI:
10.1007/s00253-012-4418-0
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center