Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2012 Nov 6;51(44):8919-30. doi: 10.1021/bi3003605. Epub 2012 Oct 24.

Mapping the conformational stability of maltose binding protein at the residue scale using nuclear magnetic resonance hydrogen exchange experiments.

Author information

Centre National de la Recherche Scientifique UMR 8587, Université Evry-Val d'Essonne et Cergy Pontoise, Laboratoire d'Analyse et de modélisation pour la Biologie et l'Environnement, Evry 91025, France.


Being able to differentiate local fluctuations from global folding-unfolding dynamics of a protein is of major interest for improving our understanding of structure-function determinants. The maltose binding protein (MBP), a protein that belongs to the maltose transport system, has a structure composed of two globular domains separated by a rigid-body "hinge bending". Here we determined, by using hydrogen exchange (HX) nuclear magnetic resonance experiments, the apparent stabilization free energies of 101 residues of MBP bound to β-cyclodextrin (MBP-βCD) under native conditions. We observed that the last helix of MBP (helix α14) has a lower protection factor than the rest of the protein. Further, HX experiments were performed using guanidine hydrochloride under subdenaturing conditions to discriminate between local fluctuations and global unfolding events and to determine the MBP-βCD energy landscape. The results show that helix α4 and a part of helices α5 and α6 are clearly grouped into a subdenaturing folding unit and represent a partially folded intermediate under native conditions. In addition, we observed that amide protons located in the hinge between the two globular domains share similar ΔG(gu)(app) and m values and should unfold simultaneously. These observations provide new points of view for improving our understanding of the thermodynamic stability and the mechanisms that drive folding-unfolding dynamics of proteins.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center